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Estimation of the nucleation probability in emulsions
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Abstract

A new method of determination of the nucleation probability of undercooled liquid dispersed within an emulsion is

presented. The nucleation probability is a nonlinear function of the temperature depending on two parameters acting

very differently. The aim of this paper is to present a method to determine these parameters by an inverse analysis of the

heat transfer during the cooling of the emulsion. Information about the precision of the identification is also presented.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

The undercooling phenomenon is characterized by

the persistence in liquid state of a material below its

melting point TF. If the crystallization occurs at tem-

perature T , we can define the undercooling as being

DT ¼ TF � T .
It is well known that the main parameter which af-

fects DT is the volume. DT increases when the size of the

sample decreases. For example, for water DT is 14 K for

a few cm3, and about 38 K for a few lm3.

Statistical studies [1], worked out on a large number

of droplets (in an emulsion for example), evidence the

stochastic character of the metastability breakdown. At

constant temperature T , all droplets do not crystallize at

the same time or during a steady cooling the crystalli-

zations occur at different temperatures. Thus, for an

isolated sample at a temperature T lower than TF, we can
only define the probability JðT Þ of crystallization by unit

of time. Nucleation theories [2,3] give this function as:

JðT Þ ¼ A � exp
 
� B

T � ðT � TFÞ2

!
for T < TF ð1Þ
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where A (s�1) and B (K3) are constants. For convenience,

we can widen the definition of JðT Þ by putting JðT Þ ¼ 0

for T P TF.
The coefficient B is characteristic of the undercooled

substance (molar volume of the crystal, interfacial ten-

sion liquid-crystal) whereas A depends on the volume of

the crystal [1,2].

The function JðT Þ is strongly nonlinear: its value

remains very close to zero for a wide range of temper-

atures below TF and then increases very quickly when T
decreases (Fig. 1).

The function JðT Þ has been determined by differential

scanning calorimetry (DSC) for certain emulsions. For

example, Fig. 1 represents the function JðT Þ for an

hexadecane emulsion within water [4]. However, this

method is time consuming and requires very coercive

experimental conditions. So, we attempted to develop a

method and the related instrumentation allowing the

determination of A and B by an inverse method requir-

ing only measurements of the temperature of the sample

during a steady cooling.
2. Direct problem

2.1. Hypothesis

The sample holder (Fig. 2) is a hollow cylinder,

containing an emulsion, whose inner radius R is small
ed.
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Nomenclature

A pre-exponential coefficient of JðT Þ
B exponential coefficient of JðT Þ
C specific heat capacity of the sample

D matrix of diagonal terms of Xt �X (np � np
matrix)

e error vector e ¼ T � Y
JðT Þ probability of crystallization

JP first auxiliary parameter to identify

J 0
P second auxiliary parameter to identify

L apparent latent heat of fusion of the sample

LF latent heat of fusion of the dispersed phase

p parameter vector (np � 1 vector)

R radius of the cylinder

S criteria

T temperature (general notation)

TðpÞ temperature response of the model (nm � 1

vector)

TF melting temperature

TP auxiliary temperature used in definitions of

JP and J 0
P

X sensitivity matrix (nm � np matrix)

Y experimental data (nm � 1 vector)

Greek symbols

d scalar parameter

k thermal conductivity

u crystallized fraction

q density of the sample

r standard deviation

h discretized temperature

Subscripts

L liquid state of the dispersed droplets

S crystallized state of the dispersed droplets

1 cooling fluid

Superscripts

k iteration number

t matrix transposition

	 quantity relative to the solution of the

identification
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Fig. 1. Probability of crystallization of dispersed droplets.
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with regard to its length. Some experimental results [5]

have shown that the temperatures are axisymmetrical.

So we consider an one-dimensional transient heat

transfer model. For time tP 0 and position 06 r6R,
the state of the sample is characterized by its tempera-

ture T ðr; tÞ and its crystallized fraction uðr; tÞ, which is

the proportion of droplets already transformed.

A previous study [6] evidenced a boundary value of

the global heat transfer coefficient between the sample

and the cooling fluid. This value is between 100 and 200

Wm�2 K�1 according to the experimental conditions. It

has been demonstrated that beyond this limit, the ther-
mal transfers do not depend anymore on the value of this

coefficient. In our experimental device, the circulation of

the cooling fluid around the cell has been designed to

have a higher heat transfer coefficient with the external

interface. Several tests [7] realized with a characterized

substance (glycerol) have shown that the heat transfer

coefficient is higher than 500 Wm�2 K�1. So, we shall use

an imposed temperature as boundary condition.

The experimental conditions are always chosen in a

way that only the dispersed phase crystallizes during the

cooling, the emulsifying medium remaining in the liquid

state. For the concerned emulsions, the dispersed
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Fig. 2. Experimental device.
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droplets are small enough to consider the emulsion as

homogeneous, and all physical quantities are relative to

this homogeneous phase. Further the studied emulsions

are supposed to be viscous enough to neglect the con-

vection phenomenon.

The thermal conductivity k and the specific heat C
are supposed to be constant with regard to the temper-

ature. However, these properties vary as the dispersed

phase is solid (kS and CS), liquid (kL and CL) or in an

intermediate state characterized by 0 < u < 1. We have

chosen a linear law [7] and we will use the following

relations:

CðuÞ ¼ CL þ ðCS � CLÞ � u
kðuÞ ¼ kL þ ðkS � kLÞ � u

�
ð2Þ

Comparisons between simulations and measurements

showed the validity of these relations for our model. [6].

Most of the properties of the emulsion depend on U
which is the mass fraction of the dispersed substance

(ratio of the mass of the dispersed liquid to the total

mass of the emulsion). For a given U, all these properties

are supposed to be constant.

2.2. Mathematical model

While supposing the previous assumptions, we use

the following energy equation:
q � Cðr; tÞ � oT ðr; tÞ
ot

¼ 1

r
� o
or

r � kðr; tÞ � oT ðr; tÞ
or

� �
þ _qqðr; tÞ

ð3Þ

The heat source term _qqðr; tÞ is different from zero

only when the crystallization of the undercooled drop-

lets occurs i.e. when JðT ðr; tÞÞ > 0 and uðr; tÞ < 1.

Let us consider a large number N of droplets per unit

volume of dispersion. Initially, all droplets are liquid

and we impose a temperature lower than TF. If at an

instant t > 0, we have nðr; tÞ droplets in a solid state per

unit volume, a number dnðr; tÞ of the N � nðr; tÞ re-

maining liquid droplets will crystallize between t and

t þ dt. This number is proportional to the remaining

number of liquid droplets and to the probability of

crystallization by unit of time JðT Þ. So, we can write:

dnðr; tÞ ¼ ðN � nðr; tÞÞ � JðT ðr; tÞÞ � dt ð4Þ

Dividing by N and defining the proportion of crys-

tallized droplets as uðr; tÞ ¼ nðr; tÞ=N , we get the Eq. (5)

that describes the kinetics of crystallization:

duðr; tÞ
dt

¼ ð1� uðr; tÞÞ � JðT ðr; tÞÞ ð5Þ

To express the heat source term _qqðr; tÞ, we suppose

that the release of heat due to the crystallization is in-

stantaneous for each drop. Under the hypothesis of
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homogeneity, we assume furthermore that the sample

has an apparent latent heat L (J kg�1), which is, for ex-

ample, directly accessible to a calorimetric measurement.

The dispersed phase being the only one concerned by a

phase change, we have L ¼ U � LF where LF is the latent

heat of the dispersed phase. Then we obtain:

_qqðr; tÞ ¼ q � L � duðr; tÞ
dt

ð6Þ

As we mentioned previously, the boundary condition

for r ¼ R is

T ðr; tÞ ¼ T1ðtÞ at r ¼ R; t > 0 ð7Þ

where T1ðtÞ is the fluid temperature outside of the cell,

depending on time. The condition of symmetry in r ¼ 0

imposes:

oT ðr; tÞ
or

¼ 0 at r ¼ 0; t > 0 ð8Þ

Initial conditions are:

T ðr; tÞ ¼ T1ð0Þ > TF for 06 r6R; t ¼ 0
uðr; tÞ ¼ 0 for 06 r6R; t ¼ 0

�
ð9Þ

T1ð0Þ being greater than TF, all droplets are initially in

the liquid state.

2.3. Numerical algorithm for solving the direct problem

The domain is divided into annular cells, in which

both temperature and crystallized fraction are supposed

to be uniform (Fig. 3). We notice him and ui
m respectively

the temperature and the crystallized fraction in the node

m ¼ 1; 2; . . . ;M and at the time i ¼ 1; 2; . . . ; I .
Because of the nonlinearity introduced by the term

source, we opted for a fully explicit scheme. Preliminary

attempts, using an implicit or semi-implicit scheme, did

not allow us to obtain the convergence of the calculations

of fields with a reasonable number of time steps. So, the

explicit method remains faster, in spite of the constraint

on Dt and Dr imposed by the condition of stability:

Dt

ðDrÞ2
6

q �minðCL;CSÞ
4 �maxðkL; kSÞ

ð10Þ

In practice, Dr is imposed by the user while Dt is

calculated in order to satisfy the above condition.

Fig. 4 shows a result of simulation giving the axial

temperature versus time for an emulsion [6] (TF ¼ 291

K, A ¼ 1:8� 1010 s�1, B ¼ 1:8� 106 K3, U ¼ 0:5). This
curve will be chosen as the reference for all the analyses

of the behaviour of the algorithm.

The cooling can be decomposed into three successive

parts: the first one (t < 1:7 h) corresponds to a steady

cooling where the dispersed phase remains in the liquid

state (u ¼ 0). At t ¼ 1:7 h, the crystallizations begin

(u > 0), leading to a release of energy within the emul-

sion. It results a stabilisation of the temperature around
T � � 278 K during about 2 h. The undercooling

DT ¼ TF � T � is around 13 K. At t ¼ 3:6 h, the last liquid
droplet crystallizes and the temperature rapidly falls.

The temperature stabilisation during the cooling can

be explained by an self-regulation phenomenon: when

the temperature reaches a value where JðT Þ is different

from zero (Fig. 1), there are some crystallizations in-

ducing a release of heat which would increase the tem-

perature. But, if the temperature is increased, the

probability of crystallization JðT Þ decreases and the

crystallization of the neighbouring droplets becomes less

probable. It is necessary to wait for a further local

cooling before additional crystallizations occur.

We also can see a consequence of this self-regulation

on the Fig. 4, the major part of the crystallizations oc-

curring at the end of the temperature stabilisation [5,6].

Fig. 5 shows the axial temperature evolution for

several values of A and B. We notice that the effect of a

variation of ±10% on B strongly modifies the evolution

of the axial temperature, while a variation of 40% on A
has a weaker influence. This weak influence will have

consequences on the estimation problem.
3. Inverse problem

The inverse problem presented in this paper consists

of the determination of the nucleation probability JðT Þ.
The mathematical expression of JðT Þ being known (Eq.
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(1)), the inverse problem is equivalent to finding out two

parameters, whose choice will be justified.

The inversion is made from the temperatures mea-

sured on the axis of the cylinder (r ¼ 0) with regular

time steps during the cooling. As the condition of sym-

metry imposes oT ðr; tÞ=orjr¼0 ¼ 0, this location mini-

mizes the errors of measurement induced by a bad

centering of the sensor. Several tests also showed that

this position reduces the effect of the measurement noise

on the solution [7].

3.1. Estimation procedure

The method is derived from the Gauss�s method and

is based on the Levenberg–Marquardt approach [8]. This

formulation allows to take advantage of both steepest
descent and Newton�s methods. Let�s remind that the

steepest descent method does not require a good initial

guess but has a slow convergence. Inversely the Newton�s
method is fast but requires to be near the solution.

We note p ¼ ½p1; . . . ; pnp �
t
the vector of the np pa-

rameters to identify. The error vector e ¼ ½e1; . . . ; enm �
t

contains the difference between the response of the

model T ¼ ½T1; . . . ; Tnm �
t
and the values of the nm ob-

served temperatures Y ¼ ½Y1; . . . ; Ynm �
t
.

Find the solution of the inverse problem is equivalent

to minimize the following sum of squares function:

SðpÞ ¼ etðpÞ � eðpÞ ¼
Xnm
i¼1

ðe2i Þ where eðpÞ ¼ TðpÞ � Y

ð11Þ
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The problem being nonlinear, an iterative method is

used: from an initial guess pð0Þ, we build the series of the

pðkÞ (where k is the iteration index) as globally

Sðkþ1Þ < SðkÞ. The iterative equation comes from the

Gauss method:

pðkþ1Þ ¼ pðkÞ � ½XtðkÞ �XðkÞ þUðkÞ��1 � ½XtðkÞ � eðkÞ� ð12Þ

The sensitivity matrix X and U are defined as follow:

XðkÞ ¼ ½xi;j� with xi;j ¼
oeðkÞi

opðkÞj

�����
i¼1;...;nm; j¼1;...;np

ð13Þ

and

UðkÞ ¼ d � Sðp
ðkÞÞ

Sðpð0ÞÞ �D
ðkÞ ð14Þ

where D is the matrix of diagonal terms of Xt �X. As D

is defined from X, the identification problem becomes

invariant under scale changes in the parameters [8,10].

With this algorithm, the search direction is continu-

ously updated by the intermediary of U, according to

the value of SðpÞ. Contrary to the Levenberg–Marqu-

ardt�s method [8,10], we do not impose a ‘‘back-track-

ing’’ when the criterion does not decrease during an

iteration.

At the beginning of the identification, the direction is

close to the steepest descent one. During the iterative

resolution, this direction progressively comes closer to

the direction given by the Newton method. With this

approach, the success of identification is not too much

dependent on the initial guess (steepest descent), while

the convergence is remaining fast (Newton).

During the first iterations (far from the solution), the

matrix Xt �X is generally ill-conditioned and its inver-

sion gives incorrect result leading to a wrong search

direction. Then the matrix UðkÞ allows the term
Xt �XþUðkÞ to be a well-conditioned matrix. In the

neighbourhood of the solution the matrix UðkÞ vanishes

because SðpðkÞÞ tends to zero, meanwhile the matrix

Xt �X becomes well-conditioned.

The coefficient d is a positive scalar that is chosen

according to the initial conditioning of the Xt �X matrix

[7]. This coefficient defines the initial search direction:

the more difficult is the case, the more d must be high,

the research direction approaching the steepest descent

one.

3.2. Sensitivity coefficients calculus

From the definition of the error vector e ¼
TðpÞ � Y , we can express X according to TðpÞ, Y being

independent from parameters:

oei
opj

¼ oTi
opj

for i ¼ 1; . . . ; nm and j ¼ 1; . . . ; np ð15Þ

We can differentiate the equations of the direct model

with regard to each parameter. The calculation of sen-

sitivity coefficients also requires the calculation of de-

rivatives of u with regard to each parameter.

In practice, calculus are made on the finite difference

version of these equations. The resulting equations can

be found in the Appendix B.

3.3. Choice of the parameters to be identified

The inverse method previously exposed is a general

one. To apply it to our particular problem of identifi-

cation, we must choose parameters that we want to find

out.

In a first time, we have tried to find out A and B di-

rectly, putting p ¼ ½A;B�t. As we describe previously

(Section 2.3 and Fig. 5), these two parameters have very
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different effects. Consequently, the resulting sensitivity

matrix X is unbalanced leading to a ill-conditioned

matrix Xt �X. In these conditions the algorithm cannot

converge to the solution, even with the additional

term U.

To outline this difficulty, we introduce a temperature

TP and choose to put p ¼ ½JP ; J 0
P �

t
with:

JP ¼ JðTP Þ ¼ A � exp
 

� B

TP � ðTP � TFÞ2

!
> 0 ð16Þ

and

J 0
P ¼ oJðT Þ

oT

����
T¼TP

¼ JðTP Þ � B � 3 � TP � TF
T 2
P � ðTP � TFÞ3

< 0 ð17Þ

With a good choice of TP , the sensitivity coefficients

with regard to JP and J 0
P have the same magnitude and

identification can be made under better conditions.

Fig. 6 shows the required number of iteration to

reach the solution for several values of TP (based on

simulated data, see Fig. 4). We can notice that the op-

timal choice of TP corresponds approximately to the

axial temperature at the moment when the crystallized

fraction reaches u ¼ 1. The crystallized fraction being

not measurable, we will notice that the previous condi-

tion is reached when the decrease of the axial tempera-

ture is the fastest. In the presented example, this optimal

temperature is T opt
P � 276:3 K.

For a TP lower than T opt
P , the convergence is slower

but the solution is reached without exceeding the nom-

inal value. If TP is greater than T opt
P , the solution is

reached with exceeding or even cannot be reached.

When the solution is reached, values of A and B are

calculated from the inverse formulas of JP and J 0
P :

A ¼ JP � exp
J 0
P � TP � ðTF � TP Þ
JP � ðTF � 3 � TP Þ

� 	
ð18Þ
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B ¼ J 0
P � T 2

P � ðTF � TP Þ3

JP � ðTF � 3 � TP Þ
ð19Þ
3.4. Precision of the identification

The analysis of an inverse problem shows that six

different sources of errors can alter the precision of the

solution [8]. In our work, we take into account the two

most important sources:

• The measurement noise.

• The errors due to the known parameters of the

model.

If we suppose that the measurement noise is additive

and follows a normal distribution with zero mean value

and constant standard deviation rY , we can use the

following classical result [8]:

covð~ppÞ ¼ r2
Y � ð eXXt � eXXÞ�1 ð20Þ

where ~pp is the solution. The diagonal terms of covð~ppÞ are
the standard deviations on the estimated parameters.

On the contrary the error on an input parameter has

a systematic character and it is not possible to make a

probability treatment. So, let us consider a known pa-

rameter p among q, kL, kS, CL, CS, TF and L. A variation

Dp of p leads to a variation DeTT p of the response eTT of the

model, inducing a variation D~eep of ~ee. For small variation

of Dp around p, we can consider the model as linear and

write:

DeTT p ¼ eXXp � Dp ð21Þ

where eXXp is the nm � 1 Sensitivity matrix of T with re-

gard to the parameter p:
276.5 277.0 277.5

K]
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Table 1

Thermophysical properties of the sample

q ¼ 932:5� 0:5 kgm�3

L ¼ 108� 1 kJ kg�1

LF ¼ 243� 1 kJ kg�1

U ¼ 0:44� 0:01

kL ¼ 0:24� 0:01 Wm�1 K�1

kS ¼ 0:38� 0:01 Wm�1 K�1

CL ¼ 2600� 50 J kg�1 K�1

CS ¼ 2220� 50 J kg�1 K�1

TF ¼ 291:3� 0:1 K
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eXXp ¼ oTð~ppÞ
op

ð22Þ

(See Appendix B for details of the calculations of

these matrix.)

In the neighbourhood of the acceptable solution ~pp,
the value of the criterion is assumed to be very small, so

we can consider that Sð~ppÞ=Sðpð0ÞÞ is close to zero, van-

ishing UðkÞ. With these hypotheses, any variation D~eep of

~ee induces a variation D~ppp of ~pp about the solution. From

Eq. (12) we can write:

D~ppp ¼ ½ eXXt �W � eXX��1 � ½ eXXt �W � D~eep� ð23Þ

where all values with a tilde are relative to the solution.

Thus, Eq. (23) becomes:

D~ppp ¼ ½ eXXt �W � eXX��1 � eXXt �W �Xp � Dp ð24Þ

In our particular case where we are using an inter-

mediary couple of parameters JP and J 0
P to identify the

values of A and B, the previous calculations gives us

information about uncertainties on the parameters JP
and J 0

P , which are to be transposed to A and B.
For small variations dJP and dJ 0P around the solu-

tion, we can write:

dA
dB

� 	
¼

oA
oJP

oA
oJ 0P

oB
oJP

oB
oJ 0P

" #
� dJP

dJ 0
P

� 	
ð25Þ

For systematic errors, We calculate DA and DB for

each quantity p using the following equations:

DA ¼ oA
oJP

���� ���� � DJP þ oA
oJ 0

P

���� ���� � DJ 0
P ð26Þ

and

DB ¼ oB
oJP

���� ���� � DJP þ oB
oJ 0

P

���� ���� � DJ 0
P ð27Þ

where DJP and DJ 0
P are calculated from D~ppp.

The variances V ðAÞ and V ðBÞ are calculated from the

elements of the covariance matrix covð~ppÞ (Eq. (20))

which is in our particular case:

covð~ppÞ ¼ V ðJP Þ covðJP ; J 0
P Þ

covðJP ; J 0
P Þ V ðJ 0

P Þ

� 	
ð28Þ

While V ðaX þ bY Þ ¼ a2 � V ðX Þ þ b2 � V ðY Þ þ 2ab�
covðX ; Y Þ, we obtain:

V ðAÞ ¼ oA
oJP


 �2
V ðJP Þ þ oA

oJ 0P

� �2

V ðJ 0
P Þ

þ2 oA
oJP


 �
oA
oJ 0P

� �
covðJP ; J 0

P Þ

V ðBÞ ¼ oB
oJP


 �2
V ðJP Þ þ oB

oJ 0P

� �2

V ðJ 0
P Þ

þ2 oB
oJP


 �
oB
oJ 0P

� �
covðJP ; J 0

P Þ

8>>>>>>>>>>>>><>>>>>>>>>>>>>:
ð29Þ
The associated confidence intervals can be evaluated

according to the classical property of the normal dis-

tribution (�2:58 � r for a 99% probability for example).

Finally, the global precision of the solution can be

then estimated combining the D~pp values for each pa-

rameter p and noise. We use the basic root-sum-square

combinatorial Eq. [9]:

D~ppj ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

½ðD~pppÞj�
2

q
for j ¼ 1; . . . ; np ð30Þ
4. Application

To validate our work, we have tested the method

with experimental data. We chose an hexadecane

emulsion already studied in the laboratory [4].

The physical properties have been determined either

by a calorimetric method in the laboratory (CL, CS and

L) or by an inverse method (kL and kS [7]). The different

values are indicated in Table 1.

Initially, the temperature of the sample is homoge-

neous and equal to T1ð0Þ ¼ 300 K. From t ¼ 0, the

temperature T1 of the outside fluid decreases linearly of

b ¼ 10 Khr�1. After three hours, the temperature sta-

bilizes at Tmin ¼ 270 K till the end of the experiment (cf.

Fig. 7).

T1ðtÞ ¼
�b � t þ T1ð0Þ when T1ðtÞP Tmin

Tmin later

�
ð31Þ

The measurements (Fig. 7) are made each minute

during approximately 4.8 h (nm ¼ 288). Each measure-

ment includes the axial temperature T ðr ¼ 0; tÞ (for the

inversion) and the temperature T ðr ¼ R; tÞ ¼ T1ðtÞ (for

the boundary condition). Type K thermocouples are

used.

The noise can be extracted from the measurement by

applying a high pass filter to the original signal. The

standard deviation can be then calculated and we find

out rY � 3� 10�2 K.
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Fig. 7 shows the experimental and calculated axial

temperature based on the identified values.

Figs. 8 and 9 show results of inversions performed

with several values of TP and d. According to the pre-

vious discussion, T opt
P is about 274.5 K and TP must be

lower than 274.5 K in order to allow inversion in good

conditions. These examples evidence the influence of TP
and d on the convergence speed.

For the same value of TP , the solution is reached after

152 iterations for d ¼ 0:1, whereas 1178 iterations are

necessary for d ¼ 1:0. In the same way, for a constant

d ¼ 0:1, 829 iterations are necessary to reach the solu-

tion with TP ¼ 273 K, and only 152 with TP ¼ 274 K.

For a TP greater than T opt
P ¼ 274:5 K, the inversion

cannot be performed. In every case we obtain the values

A ¼ 2:18� 109 s�1 and B ¼ 1:90� 106 K3.
Table 2 gives the influence of uncertainties of

each input parameters on the solution according to

(24).

We can notice that A is more influenced by the errors

than B. The relative errors introduced on A are between

0.7% and 27.8% while they are lower than 0.2% on B. In
spite of a very good precision on q and TF, we notice that
the corresponding uncertainties on A and B are not so

small. In fact, if we consider the relative errors DA=A and

DB=B for each input parameters with a constant Dp=p,
the parameters L, q and TF are the most influential on

the precision of the solution.

Concerning the measurement noise influence, using

Eq. (20), (26), and (27) we find rA ¼ 1:24� 104 s�1 and

rB ¼ 7:62� 101 K3 which can be neglected with regard

to the other inaccuracies.



Table 2

Influence of the input parameters uncertainties on the solution

p Dp Dp=pð%Þ DA (s�1) DA=Að%Þ DB (K�3) DB=Bð%Þ
kL 0.01 4.2 1.8· 108 8.2 3.0· 104 1.6

kS 0.01 2.6 5.9· 108 27.8 3.8· 104 2.0

CL 50 1.9 3.6· 108 16.4 8.8· 103 0.5

CS 50 2.3 2.9· 108 13.2 6.1· 103 0.3

L 1 0.9 5.4· 108 24.6 2.7· 104 1.4

q 0.5 5.4 · 10�2 1.5· 107 0.7 1.2· 103 0.6

TF 0.1 3.4 · 10�2 4.1· 108 18.6 3.7· 104 1.9
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Fig. 9. Parameter B evolution.
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Combining all the sources of error (Eq. (30)), we

obtain finally A ¼ ð2:2� 0:9Þ � 109 s�1 and B ¼
ð1:90� 0:06Þ � 106 K3.

If we compare the values of B obtained by DSC [4]

i.e. B ¼ ð1:9� 0:1Þ � 106 K3 and by our method, we

notice a good agreement.

For the parameter A, the value determined by DSC is

between 1:7� 109 and 2:6� 1011 s�1 with A ¼ 2:1� 1010

s�1 as the most probable value. Although these results

are acceptable if we take uncertainties into account, this

difference can be explained by the size of the droplets of

emulsions [2].

On the contrary, the coefficient B being independent

from the size of droplets, we understand that both de-

terminations give the same value.
5. Conclusion

We finalized an inverse method of determination of

the probability of crystallization in the case of droplets

dispersed within an emulsion.

This method was validated by determining the pa-

rameters A and B of the nucleation probability JðT Þ
from experimental data. The influence of the uncer-

tainties of the parameters on the solution was studied.

We obtained for B a precise value (DB=B � 3%), in

agreement with the previous determination by a calori-

metric method.

The value of A is obtained with a less good precision

(DA=A � 40%). Thus we still evidence the difficulty of

identifying the parameter A, mainly because of its weak

influence on the heat transfer during a cooling.
Appendix A. Finite difference equations

Let:

Dr ¼ 2 � R
2 �M � 1

Dt ¼ T
I � 1

hiþ1
1 ¼ hi1 þ L � Dt � 1

Ci
1

� ð1� ui
1Þ � Jðh

i
1Þ

þ 4 � Dt

q � ðDrÞ2
� ki1
Ci

1

� ðhi2 � hi1Þ ðA:1Þ
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hiþ1
m ¼ him þ L � Dt � 1

Ci
1

� ð1� ui
1Þ � Jðh

i
1Þ

þ Dt

q � ðDrÞ2
� kim
Ci
m

� ðhimþ1 � 2 � him þ him�1Þ

þ Dt

q � ðDrÞ2
� 1

2 � m� 2
� kim
Ci
m

� ðhimþ1 � him�1Þ ðA:2Þ

hiþ1
Mþ1 ¼ hiþ1

1 ðA:3Þ

uiþ1
m ¼ ui

m þ ð1� ui
mÞ � Jðh

i
1Þ � Dt ðA:4Þ

The boundaries conditions are:

h1
m ¼ h1

1 for m ¼ 1; . . . ;M

hiM ¼ hi1 for i ¼ 1; . . . ; I

u1
m ¼ 0 for m ¼ 1; . . . ;M
Appendix B. Sensitivity coefficients calculations

We first perform the derivation of the previous dif-

ference equations with regard to an arbitrary variable a.
We set:

X i
m ¼ ohim

oa

Y i
m ¼ oui

m

oa

We obtain:

X iþ1
1 ¼ X i

1 þ L � Dt � 1

Ci
1

� Di
1 þ L � Dt � F

i
1

Ci
1

� ð1� ui
1Þ � Jðh

i
1Þ

þ 4 � Dt

q � ðDrÞ2
� ki1
Ci

1

� ðX i
2 � X i

1Þ

þ 4 � Dt

q � ðDrÞ2
� E

i
1

Ci
1

� ðhi2 � hi1Þ ðB:1Þ

X iþ1
m ¼ X i

m þ L � Dt � 1

Ci
m

� Di
m þ L � Dt � F

i
m

Ci
m

� ð1� ui
mÞ � Jðh

i
mÞ

þ Dt

q � ðDrÞ2
� kim
Ci
m

� ðX i
mþ1 � 2 � X i

m þ X i
m�1Þ

þ Dt

q � ðDrÞ2
� 1

2 � m� 2
� kim
Ci
m

� ðX i
mþ1 � X i

m�1Þ

þ Dt

q � ðDrÞ2
� E

i
m

Ci
m

� ðhimþ1 � 2 � him þ him�1Þ

þ Dt

q � ðDrÞ2
� 1

2 � m� 2
� E

i
m

Ci
m

� ðhimþ1 � him�1Þ ðB:2Þ

X iþ1
Mþ1 ¼ 0 ðB:3Þ

Y iþ1 ¼ Y i þ Di � Dt ðB:4Þ
m m m
with:

Di
m ¼ Zi

m � ð1� ui
mÞ � Y i

m � JðhimÞ

Zi
m ¼ o

oa
½JðhimÞ�

Ei
m ¼ Ci

m � o
oa

Ki
m

Ci
m

� 	
¼ oKi

m

oa
þ Ki

m � F i
m

F i
m ¼ Ci

m � o
oa

1

Ci
m

� 	
¼ � 1

Ci
m

� oC
i
m

oa

Inversion algorithm and confidence interval calcula-

tion require to compute sensitivity coefficients for all

variables. Table 3 indicates the expressions to be used

according to the considered parameter.

F1 ¼ �CS � CL

Ci
m

� Y i
m

F2 ¼ � 1� ui
m � ðCS � CLÞ � Y i

m

Ci
m

F3 ¼ �ui
m � ðCS � CLÞ � Y i

m

Ci
m

E1 ¼ ðkS � kLÞ � Y i
m þ kim � F i

m

E2 ¼ 1� ui
m þ ðkS � kLÞ � Y i

m þ kim � F i
m

E3 ¼ ui
m þ ðkS � kLÞ � Y i

m þ kim � F i
m

Z1 ¼ exp

 
� B

him � ðh
i
m � TFÞ2

!

� oA
oa

"
� A

him � ðh
i
m � TFÞ2

� oB
oa

þA �B � ð3 � him � TFÞ
ðhimÞ

2 � ðhim � TFÞ3
�X i

m

#

Z2 ¼ JðhimÞ � B � 3 � him � TF
ðhimÞ

2 � ðhim � TFÞ3
� X i

m

Z3 ¼ JðhimÞ �
X i
m � ð3 � him � TFÞ � 2 � him

ðhimÞ
2 � ðhim � TFÞ3

Finally, cases a ¼ L and a ¼ q require some additive

terms. For a ¼ L, the following terms must be added to

Eqs. (B.1) and (B.2):

X iþ1
1 ¼ � � � þ 1

Ci
1

� Dt � Jðhi1Þ � ð1� ui
1Þ

X iþ1
m ¼ � � � þ 1

Ci
m

� Dt � JðhimÞ � ð1� ui
mÞ

For the case a ¼ q, the following terms must be ad-

ded respectively to Eqs. (B.1) and (B.2):

X i
1 ¼ � � � � 4 � ki1

Ci
1

� Dt

q � ðDrÞ2
� 1
q
� ðhi2 � hi1Þ



Table 3

Sensitivity coefficients calculus cases

JP J 0
P kL kS CL CS TF L q

F i
m F1 F1 F1 F1 F2 F3 F1 F1 F1
Ei
m E1 E1 E2 E3 E1 E1 E1 E1 E1

Zi
m Z1 Z1 Z2 Z2 Z2 Z2 Z3 Z2 Z2
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X i
m ¼ � � � � kim

Ci
m

� Dt

q � ðDrÞ2
� 1
q
� ½himþ1 � 2 � him þ him�1�

� 1

2 � m� 2
� kim
Ci
m

� Dt

q � ðDrÞ2
� 1
q
� ðhimþ1 � him�1Þ

The boundaries conditions are:

X 1
m ¼ 0 and Y 1

m ¼ 0 for m ¼ 1; . . . ;M

Xi
M ¼ 0 and Y i

M ¼ 0 for i ¼ 1; . . . ; I
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